Kurssit

Insoft on palvellut IT-yhteisöä Ciscon virallisella koulutustarjonnalla vuodesta 2010. Tältä sivulta löydät kaikki olennaiset tiedot Ciscon koulutuksesta.

Katso lisää

Cisco Learning Credits

Cisco opintopisteet (CLC) ovat suoraan Ciscon kanssa lunastettuja prepaid-koulutusseteleitä, jotka helpottavat menestyksen suunnittelua ostaessasi Ciscon tuotteita ja palveluita.

Katso lisää

Cisco Continuing Education

Cisco täydennyskoulutusohjelma tarjoaa kaikille aktiivisille sertifioinnin haltijoille joustavia vaihtoehtoja uudelleensertifiointiin suorittamalla erilaisia kelvollisia koulutuskohteita.

Katso lisää

Cisco Digital Learning

Sertifioidut työntekijät ovat ARVOSTETTUJA omaisuuseriä. Tutustu Ciscon valtuutettuun digitaaliseen oppimiskirjastoon ja kouluta itseäsi tallennettujen istuntojen avulla.

Katso lisää

Cisco Business Enablement

Cisco Business Enablement Partner Program keskittyy Cisco Channel Partnersin ja asiakkaiden liiketoimintataitojen terävöittämiseen.

Katso lisää

Kurssit

Insoft Services on auktorisoitu Fortinet-kouluttaja useassa Euroopan maassa.

Katso lisää

ATC Status

Tarkista ATC-tilamme valituissa Euroopan maissa.

Katso lisää

Kurssit

Insoft Services tarjoaa Microsoftille EMEAR-koulutusta. Tarjoamme Microsoftin teknistä koulutusta ja sertifiointikursseja, joita johtavat maailmanluokan ohjaajat.

Katso lisää

Kurssit

Extreme Networks Technical Trainingin kehitys tarjoaa kattavan progressiivisen polun associate-akkreditoinnista ammatilliseen akkreditointiin.

Katso lisää

ATP-akkreditointi

Valtuutettuna koulutuskumppanina (ATP) Insoft Services varmistaa, että saat korkeimman saatavilla olevan koulutuksen.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Missiomme: Tarjota asiantunteva joukko moderneja ja huippuluokan verkkoautomaatiotaitoja markkinoille asiantuntijapalvelujen avulla.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Autamme organisaatioita ottamaan käyttöön Software-Defined Networking (SDN) -ratkaisuja, kuten Cisco DNA:ta.Lisäksi tiimillämme on laaja kokemus Cisco DNA Centerin integroinnista kolmannen osapuolen järjestelmiin.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

Tiimimme

Koulutusvalikoimaamme kuuluu laaja valikoima IT-koulutusta IP-palveluntarjoajilta, mukaan lukien Cisco, Extreme Networks, Fortinet, Microsoft, muutamia mainitakseni, EMEA-alueella.

Katso lisää

Developing Generative AI Applications on AWS

Ota yhteyttä

Voit olla meihin yhteydessä ja tiedustella koulutuksistamme täydentämällä yhteystietosi ja koulutuksen nimen oheen.

Tietosuojalauseke ja yksityisyys

Suostun vastaanottamaan sähköpostiviestejä ja/tai puheluita Insoft Services Oy: n tuotteista ja palveluista.
Hyväksyn, että tietojani kerätään ja käsitellään Insoft Servicesin tietosuojakäytännössä kuvatulla tavalla.

Close

Developing Generative AI Applications on AWS

VARAA NYT
Developing Generative AI Applications on AWS
Kesto
2 päivää
Toimitus
(Online ja paikan päällä)
Hinta
Hinta pyydettäessä

This course is designed to introduce generative AI to software developers interested in leveraging large language models without fine-tuning. The course provides an overview of generative AI, planning a generative AI project, getting started with Amazon Bedrock, the foundations of prompt engineering, and the architecture patterns to build generative AI applications using Amazon Bedrock and LangChain.

  • Course level: Advanced

In this course, you will learn to:

  • Describe generative AI and how it aligns to machine learning
  • Define the importance of generative AI and explain its potential risks and benefits
  • Identify business value from generative AI use cases
  • Discuss the technical foundations and key terminology for generative AI
  • Explain the steps for planning a generative AI project
  • Identify some of the risks and mitigations when using generative AI
  • Understand how Amazon Bedrock works
  • Familiarize yourself with basic concepts of Amazon Bedrock
  • Recognize the benefits of Amazon Bedrock
  • List typical use cases for Amazon Bedrock
  • Describe the typical architecture associated with an Amazon Bedrock solution
  • Understand the cost structure of Amazon Bedrock
  • Implement a demonstration of Amazon Bedrock in the AWS Management Console
  • Define prompt engineering and apply general best practices when interacting with FMs
  • Identify the basic types of prompt techniques, including zero-shot and few-shot learning
  • Apply advanced prompt techniques when necessary for your use case
  • Identify which prompt-techniques are best-suited for specific models
  • Identify potential prompt misuses
  • Analyze potential bias in FM responses and design prompts that mitigate that bias
  • Identify the components of a generative AI application and how to customize a foundation model (FM)
  • Describe Amazon Bedrock foundation models, inference parameters, and key Amazon Bedrock APIs
  • Identify Amazon Web Services (AWS) offerings that help with monitoring, securing, and governing your Amazon Bedrock applications
  • Describe how to integrate LangChain with large language models (LLMs), prompt templates, chains, chat models, text embeddings models, document loaders, retrievers, and Agents for Amazon Bedrock
  • Describe architecture patterns that can be implemented with Amazon Bedrock for building generative AI applications
  • Apply the concepts to build and test sample use cases that leverage the various Amazon Bedrock models, LangChain, and the Retrieval Augmented Generation (RAG) approach

Day 1

Module 1: Introduction to Generative AI – Art of the Possible

  • Overview of ML
  • Basics of generative AI
  • Generative AI use cases
  • Generative AI in practice
  • Risks and benefits

Module 2: Planning a Generative AI Project

  • Generative AI fundamentals
  • Generative AI in practice
  • Generative AI context
  • Steps in planning a generative AI project
  • Risks and mitigation

Module 3: Getting Started with Amazon Bedrock

  • Introduction to Amazon Bedrock
  • Architecture and use cases
  • How to use Amazon Bedrock
  • Demonstration: Setting Up Amazon Bedrock Access and Using Playgrounds

Module 4: Foundations of Prompt Engineering

  • Basics of foundation models
  • Fundamentals of prompt engineering
  • Basic prompt techniques
  • Advanced prompt techniques
  • Demonstration: Fine-Tuning a Basic Text Prompt
  • Model-specific prompt techniques
  • Addressing prompt misuses
  • Mitigating bias
  • Demonstration: Image Bias-Mitigation

Day 2

Module 5: Amazon Bedrock Application Components

  • Applications and use cases
  • Overview of generative AI application components
  • Foundation models and the FM interface
  • Working with datasets and embeddings
  • Demonstration: Word Embeddings
  • Additional application components
  • RAG
  • Model fine-tuning
  • Securing generative AI applications
  • Generative AI application architecture

Module 6: Amazon Bedrock Foundation Models

  • Introduction to Amazon Bedrock foundation models
  • Using Amazon Bedrock FMs for inference
  • Amazon Bedrock methods
  • Data protection and auditability
  • Lab: Invoke Amazon Bedrock model for text generation using zero-shot prompt

Module 7: LangChain

  • Optimizing LLM performance
  • Integrating AWS and LangChain
  • Using models with LangChain
  • Constructing prompts
  • Structuring documents with indexes
  • Storing and retrieving data with memory
  • Using chains to sequence components
  • Managing external resources with LangChain agents

Module 8: Architecture Patterns

  • Introduction to architecture patterns
  • Text summarization
  • Lab: Using Amazon Titan Text Premier to summarize text of small files
  • Lab: Summarize long texts with Amazon Titan
  • Question answering
  • Lab: Using Amazon Bedrock for question answering
  • Chatbots
  • Lab: Build a chatbot
  • Code generation
  • Lab: Using Amazon Bedrock Models for Code Generation
  • LangChain and agents for Amazon Bedrock
  • Lab: Building conversational applications with the Converse API

This course is intended for:

  • Software developers interested in leveraging large language models without fine-tuning

We recommend that attendees of this course have:

  • AWS Technical Essentials
  • Intermediate-level proficiency in Python

This course is designed to introduce generative AI to software developers interested in leveraging large language models without fine-tuning. The course provides an overview of generative AI, planning a generative AI project, getting started with Amazon Bedrock, the foundations of prompt engineering, and the architecture patterns to build generative AI applications using Amazon Bedrock and LangChain.

  • Course level: Advanced

In this course, you will learn to:

  • Describe generative AI and how it aligns to machine learning
  • Define the importance of generative AI and explain its potential risks and benefits
  • Identify business value from generative AI use cases
  • Discuss the technical foundations and key terminology for generative AI
  • Explain the steps for planning a generative AI project
  • Identify some of the risks and mitigations when using generative AI
  • Understand how Amazon Bedrock works
  • Familiarize yourself with basic concepts of Amazon Bedrock
  • Recognize the benefits of Amazon Bedrock
  • List typical use cases for Amazon Bedrock
  • Describe the typical architecture associated with an Amazon Bedrock solution
  • Understand the cost structure of Amazon Bedrock
  • Implement a demonstration of Amazon Bedrock in the AWS Management Console
  • Define prompt engineering and apply general best practices when interacting with FMs
  • Identify the basic types of prompt techniques, including zero-shot and few-shot learning
  • Apply advanced prompt techniques when necessary for your use case
  • Identify which prompt-techniques are best-suited for specific models
  • Identify potential prompt misuses
  • Analyze potential bias in FM responses and design prompts that mitigate that bias
  • Identify the components of a generative AI application and how to customize a foundation model (FM)
  • Describe Amazon Bedrock foundation models, inference parameters, and key Amazon Bedrock APIs
  • Identify Amazon Web Services (AWS) offerings that help with monitoring, securing, and governing your Amazon Bedrock applications
  • Describe how to integrate LangChain with large language models (LLMs), prompt templates, chains, chat models, text embeddings models, document loaders, retrievers, and Agents for Amazon Bedrock
  • Describe architecture patterns that can be implemented with Amazon Bedrock for building generative AI applications
  • Apply the concepts to build and test sample use cases that leverage the various Amazon Bedrock models, LangChain, and the Retrieval Augmented Generation (RAG) approach

Day 1

Module 1: Introduction to Generative AI – Art of the Possible

  • Overview of ML
  • Basics of generative AI
  • Generative AI use cases
  • Generative AI in practice
  • Risks and benefits

Module 2: Planning a Generative AI Project

  • Generative AI fundamentals
  • Generative AI in practice
  • Generative AI context
  • Steps in planning a generative AI project
  • Risks and mitigation

Module 3: Getting Started with Amazon Bedrock

  • Introduction to Amazon Bedrock
  • Architecture and use cases
  • How to use Amazon Bedrock
  • Demonstration: Setting Up Amazon Bedrock Access and Using Playgrounds

Module 4: Foundations of Prompt Engineering

  • Basics of foundation models
  • Fundamentals of prompt engineering
  • Basic prompt techniques
  • Advanced prompt techniques
  • Demonstration: Fine-Tuning a Basic Text Prompt
  • Model-specific prompt techniques
  • Addressing prompt misuses
  • Mitigating bias
  • Demonstration: Image Bias-Mitigation

Day 2

Module 5: Amazon Bedrock Application Components

  • Applications and use cases
  • Overview of generative AI application components
  • Foundation models and the FM interface
  • Working with datasets and embeddings
  • Demonstration: Word Embeddings
  • Additional application components
  • RAG
  • Model fine-tuning
  • Securing generative AI applications
  • Generative AI application architecture

Module 6: Amazon Bedrock Foundation Models

  • Introduction to Amazon Bedrock foundation models
  • Using Amazon Bedrock FMs for inference
  • Amazon Bedrock methods
  • Data protection and auditability
  • Lab: Invoke Amazon Bedrock model for text generation using zero-shot prompt

Module 7: LangChain

  • Optimizing LLM performance
  • Integrating AWS and LangChain
  • Using models with LangChain
  • Constructing prompts
  • Structuring documents with indexes
  • Storing and retrieving data with memory
  • Using chains to sequence components
  • Managing external resources with LangChain agents

Module 8: Architecture Patterns

  • Introduction to architecture patterns
  • Text summarization
  • Lab: Using Amazon Titan Text Premier to summarize text of small files
  • Lab: Summarize long texts with Amazon Titan
  • Question answering
  • Lab: Using Amazon Bedrock for question answering
  • Chatbots
  • Lab: Build a chatbot
  • Code generation
  • Lab: Using Amazon Bedrock Models for Code Generation
  • LangChain and agents for Amazon Bedrock
  • Lab: Building conversational applications with the Converse API

This course is intended for:

  • Software developers interested in leveraging large language models without fine-tuning

We recommend that attendees of this course have:

  • AWS Technical Essentials
  • Intermediate-level proficiency in Python